Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hui Zhang ${ }^{\mathrm{a}, \mathrm{b}}$ * and Liang Fang ${ }^{\text {a,b }}$

${ }^{\text {a }}$ State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China, and ${ }^{\text {b }}$ Institut für Anorganische Chemie, RWTH Aachen, Professor-Pirlet-Straße 1, 52056 Aachen, Germany

Correspondence e-mail:
hui.zhang@ac.rwth-aachen.de

Key indicators

Single-crystal X-ray study
$T=223 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.013 \AA$
R factor $=0.032$
$w R$ factor $=0.078$
Data-to-parameter ratio $=25.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Monopotassium octapyridinium tris[hexachlorobismuthate(III)]

The title compound, $\mathrm{K}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)_{8}\left[\mathrm{BiCl}_{6}\right]_{3}$, contains discrete $\left[\mathrm{BiCl}_{6}\right]^{3-}$ anions, and pyridinium $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+}\right)$and potassium cations. The anion exhibits a slightly distorted octahedral geometry. K is coordinated by six Cl atoms from $\left[\mathrm{BiCl}_{6}\right]^{3-}$ units. The protonated N atoms are involved in hydrogen bonding with Cl atoms, giving a three-dimensional structure.

Comment

Some pyridinium halogenometallates, such as $[\mathrm{HPy}]_{2}\left[\mathrm{MnX} \mathrm{X}_{4}\right]$ (HPy $\left.=\left[\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}^{+}\right] ; X=\mathrm{Cl}, \mathrm{Br}\right)$ (Brassy et al., 1976), $[\mathrm{HPy}]_{2.5}\left[\mathrm{FeCl}_{4}\right] \mathrm{Cl}_{1.5}$ (James et al., 1982), and $[\mathrm{HPy}]_{2}\left[\mathrm{ReCl}_{6}\right]$ (Mrozinski et al., 2002), have been investigated for their magnetic properties.

(I)

The title compound, (I), is composed of discrete K^{+}and $\left[\mathrm{C}_{5} \mathrm{NH}_{6}\right]^{+}$cations, and $\left[\mathrm{BiCl}_{6}\right]^{3-}$ anions. The three independent Bi^{3+} atoms lie at the centers of $\left[\mathrm{BiCl}_{6}\right]$ octahedra, with $\mathrm{Bi}-\mathrm{Cl}$ distances ranging from 2.590 (2) to 2.857 (2) $\AA . \mathrm{K}^{+}$is linked to atoms $\mathrm{Cl} 26, \mathrm{Cl} 21^{\mathrm{i}}, \mathrm{Cl} 22^{\mathrm{ii}}, \mathrm{Cl} 31, \mathrm{Cl} 32$ and Cl 35 , resulting in a distorted coordination arrangement, with $\mathrm{K}-\mathrm{Cl}$ distances in the range 3.066 (2)-3.236 (2) \AA (symmetry codes given in Table 1). Part of the crystal structure is illustrated in Fig. 1. The protonated N atoms are involved in hydrogen bonding, with $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ distances in the range 2.45 (2)2.83 (2) A, resulting in a three-dimensional structure (see also

Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

Received 26 October 2004
Accepted 5 November 2004
Online 13 November 2004

Figure 2
The crystal packing of the title compound, viewed approximately along [010]. H atoms have been omitted for clarity.

Table 2). The packing of the crystal structure is illustrated in Fig. 2.

Experimental

Pyridine ($8 \mathrm{mmol}, 0.6328 \mathrm{~g}$), $\mathrm{KCl}(1 \mathrm{mmol}, 0.0746 \mathrm{~g})$ and BiCl_{3} ($3 \mathrm{mmol}, 0.946 \mathrm{~g}$) were dissolved in dilute $\mathrm{HCl}(10 \mathrm{ml}, 6 \mathrm{M})$ and the resultant solution was evaporated slowly at room temperature. The title compound was obtained as prismatic colorless crystals after several days. The density of the crystals was measured by the Archimedes method.

Crystal data

$\mathrm{K}\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}\right)_{6}\left[\mathrm{BiCl}_{6}\right]_{3}$
$M_{r}=1945.00$
Monoclinic, $P 2_{d} / c$
$a=24.392$ (8) A
$b=9.278$ (3) A
$c=28.403(10) \AA$
$\beta=94.979(7)^{\circ}{ }^{\circ}$
$V=6404$ (4) \AA^{3}
$Z=4$
$D_{x}=2.017 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART APEX CCD	15911 independent reflections
\quad diffractometer	12299 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.055$
Absorption correction: multi-scan	$\theta_{\max }=28.3^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-32 \rightarrow 32$
$T_{\min }=0.350, T_{\max }=0.442$	$k=-12 \rightarrow 12$
86329 measured reflections	$l=-37 \rightarrow 37$

Refinement

Refinement on $F^{2} \quad w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0322 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.078$
$S=1.04$
15911 reflections
631 parameters
H atom parameters constrained

Table 1
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$).

Bi10-Cl11	2.6597 (15)	Bi30-Cl35	2.6663 (15)
Bi10-Cl14	2.6921 (15)	Bi30-Cl34	2.6674 (16)
Bi10-Cl12	2.7077 (15)	Bi30-Cl33	2.6815 (16)
Bi10-Cl15	2.7106 (15)	Bi30-Cl31	2.7152 (15)
Bi10-Cl16	2.7111 (15)	Bi30-Cl32	2.7397 (15)
Bi10-Cl13	2.7471 (15)	Bi30-Cl36	2.7507 (16)
Bi20-Cl24	2.5900 (15)	K1-Cl26	3.066 (2)
Bi20-Cl23	2.6815 (15)	$\mathrm{K} 1-\mathrm{Cl} 21^{\text {i }}$	3.0747 (19)
Bi20-Cl25	2.6855 (16)	K1-Cl31	3.099 (2)
Bi20-Cl21	2.7086 (15)	K1-Cl32	3.116 (2)
Bi20-Cl26	2.7238 (16)	$\mathrm{K} 1-\mathrm{Cl} 22^{\text {ii }}$	3.1283 (19)
$\mathrm{Bi} 20-\mathrm{Cl} 22$	2.8569 (15)	$\mathrm{K} 1-\mathrm{Cl} 35$	3.236 (2)
C114-Bi10-Cl12	178.03 (5)	Cl34-Bi30-Cl32	179.38 (5)
C111-Bi10-Cl16	90.36 (5)	Cl35-Bi30-Cl36	174.44 (5)
Cl15-Bi10-Cl16	174.64 (4)	Cl31-Bi30-Cl36	88.40 (5)
C111-Bi10-Cl13	176.32 (5)	$\mathrm{Cl} 26-\mathrm{K} 1-\mathrm{Cl} 21^{\mathrm{i}}$	109.38 (5)
$\mathrm{Cl} 23-\mathrm{Bi} 20-\mathrm{Cl} 21$	172.09 (5)	Cl26-K1-Cl31	82.62 (5)
$\mathrm{Cl} 25-\mathrm{Bi} 20-\mathrm{Cl} 26$	172.01 (5)	$\mathrm{Cl} 31-\mathrm{K} 1-\mathrm{Cl} 32$	74.87 (5)
$\mathrm{Cl} 21-\mathrm{Bi} 20-\mathrm{Cl} 26$	88.99 (5)	$\mathrm{Cl} 21^{\mathrm{i}}-\mathrm{K} 1-\mathrm{Cl} 22^{\text {ii }}$	109.71 (6)
$\mathrm{Cl} 24-\mathrm{Bi} 20-\mathrm{Cl} 22$	172.87 (5)	$\mathrm{Cl} 31-\mathrm{K} 1-\mathrm{Cl} 35$	70.82 (5)
Cl33-Bi30-Cl31	176.87 (5)	Cl32-K1-Cl35	72.41 (4)

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 11 \cdots \mathrm{Cl} 13^{\text {iii }}$	0.87	2.45	$3.208(5)$	146
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{Cl} 16^{\text {iv }}$	0.87	2.64	$3.333(6)$	137
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{Cl} 11^{\mathrm{v}}$	0.87	2.83	$3.430(6)$	128
$\mathrm{~N} 31-\mathrm{H} 31 \cdots \mathrm{Cl} 36^{\text {vi }}$	0.87	2.73	$3.388(7)$	134
$\mathrm{~N} 41-\mathrm{H} 41 \cdots \mathrm{Cl} 26^{\mathrm{ii}}$	0.87	2.56	$3.325(6)$	147
$\mathrm{~N} 41-\mathrm{H} 41 \cdots \mathrm{Cl} 23^{\text {ii }}$	0.87	2.76	$3.342(6)$	126
$\mathrm{~N} 51-\mathrm{H} 51 \cdots \mathrm{Cl} 23^{\mathrm{ii}}$	0.87	2.45	$3.255(6)$	153
$\mathrm{~N} 61-\mathrm{H} 61 \cdots \mathrm{Cl} 322^{\text {vii }}$	0.87	2.69	$3.359(7)$	134
$\mathrm{~N} 61-\mathrm{H} 61 \cdots \mathrm{Cl} 21^{\text {ii }}$	0.87	2.76	$3.361(7)$	128
$\mathrm{~N} 71-\mathrm{H} 71 \cdots \mathrm{Cl} 22^{\text {ii }}$	0.87	2.46	$3.228(6)$	147
$\mathrm{~N} 81-\mathrm{H} 81 \cdots \mathrm{Cl} 36^{\text {viii }}$	0.87	2.46	$3.321(8)$	170

Symmetry codes: (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $1+x, y, z$; (iv) $x, 1+y, z$; (v) $-x, 1-y,-z$; (vi) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (vii) $x, y-1, z$; (viii) $x, y, 1+z$.

The pyridinium H atoms were constrained to an ideal geometry, with $\mathrm{C}-\mathrm{H}$ distances of $0.94 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.87 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The maximum residual electron density was found $0.83 \AA$ from atom Bi30 and the minimum electron density 1.46 A from Bi10.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Crystal Impact, 2000); software used to prepare material for publication: SHELXTL.

metal-organic papers

HZ thanks DAAD for a scholarship and Mr K. Kruse is thanked for the data collection.

References

Brassy, P. C., Robert, R., Bachet, B. \& Chevalier, R. (1976). Acta Cryst. B32, 1371-1376

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Crystal Impact (2000). DIAMOND. Release 2.1.d. Crystal Impact GbR, D53002 Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
James, B. D., Millikan, M. B. \& Mackay, M. F. (1982). Inorg. Chim. Acta, 64, 5557.

Mrozinski, J., Kochel, A. \& Lis, T. (2002). J. Mol. Struct. 641, 109-117.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

